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ABSTRACT 

Le t  K be  a field,  c h a r  K = 0 a n d  M n ( K )  t h e  a l g e b r a  of n x n m a t r i c e s  

o v e r  K .  I f  A = ( . k l , . . . ,  Am) a n d  # = ( /~1 , - - - ,  # m )  a re  p a r t i t i o n s  of  n 2 le t  

F )' '~ -- ~ (sgn ~ - )  xa(1)  

a , rES  2 

• X a ( x l ) y r ( 1 )  ". .  y r (~ l )Xa( ;~ l+l )  

• Xa()~l+)~2)yr(t t l+l)  " . . y r ( ~ l  +~u2 ) 

• Xa( ) , I  + . . . + ) ~ , ~ _ 1  + 1 )  

• " " x a ( n 2 ) Y ' r ( ~  + ' " + ~ m - 1  +1) " " " Yr(n2) 

w h e r e  Xl,  . . . , Xn2, Y l , . .  •, Yn2 a re  n o n c o m m u t i n g  i n d e t e r m i n a t e s  a n d  Sn2 

is t h e  s y m m e t r i c  g r o u p  of deg ree  n 2. 

T h e  p o l y n o m i a l s  F ;~,~, w h e n  e v a l u a t e d  in  M n ( K ) ,  t a k e  c e n t r a l  va iue s  

a n d  we s t u d y  t h e  p r o b l e m  of c l a s s i fy ing  those  p a r t i t i o n s  ,k, # for w h i c h  

F ~,~ is a c e n t r a l  p o l y n o m i a l  (no t  a p o l y n o m i a l  i d e n t i t y )  for M r , ( K ) .  

W e  give  a f o r m u l a  t h a t  a l lows us  to  e v a l u a t e  F )'#' in  M n ( K )  in  g e n e r a l  

a n d  we p r o v e  t h a t  if ), a n d / z  a re  no t  b o t h  d e r i v e d  in  a s u i t a b l e  way  f r o m  

t h e  p a r t i t i o n  ~i = ( 1 , 3 , . . . , 2 n -  3 , 2 n -  1), t h e n  F x,~" is a p o l y n o m i a l  

i d e n t i t y  for M n ( K ) .  As a n  a p p l i c a t i o n ,  we e x h i b i t  a new class  of  c e n t r a l  

p o l y n o m i a l s  for M n ( K ) .  
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1. I n t r o d u c t i o n  

Let K be a field of characteristic zero and K { X }  the free algebra on the countable 

set X = {x l ,x2 , . . . } .  Let M,~(K) be the algebra of n x n matrices over K.  

Recall that  an element f ( x i , . . . ,  x,~) • K { X }  is called a c e n t r a l  p o l y n o m i a l  

for Mn(K) if for all A1 , . . . ,  AN • M~(K),  f (A1 , . . . ,An )  lies in the center of 

Mn(K) and f is not a polynomial identity for Mn(K) (i.e., f takes on nonzero 

values). 

The first central polynomials for M,(K)  for any n were constructed by 

Formanek ([2]) and Razmyslov ([7]) with two different methods. Other central 

polynomials were produced by Halpin ([4]) by exploiting the methods of [7] and 

recently by Drensk:~ ([1]) who constructed new central polynomials of minimal 

known degree for any n. 

In this paper we study a class of polynomials associated to pairs of partitions 

of n 2 and, as a coRsequence, we construct a new class of central polynomials for 

Mn(K) multilinear and alternating in two sets of variables. 

Let {yl, Y2,-. -} be a new set of noncommuting variables• Recall that  if r is a 

positive integer, an (improper) p a r t i t i o n  of r is a sequence of positive integers 
m A = ( A 1 , . . . ,  A m )  such that  ~ = 1  Ai : r. We write A ~ r and h(A) = m. Let 

S~ be the symmetric group on {1, 2 , . . . ,  r}. For each pair of partitions A, # ~ n 2 

such that  h(A) = h(]~) = m define the polynomial 

F ~'~' = ~ (sgna~') xo(1)...xc,(~,~)y~-(1)...y~.(~l)x,,(~,l+l) 
a,'r6S,,2 

• " " X a ( A 1  @A2 )Y'r(~ul  + 1 )  " "  " Y ' r  (p.1 +/z:~ ) 

. . . X a ( A I + . . . + A m _ I  + 1 )  

"'" X a( n 2 ) yr(m +--+~m-I +1) "'" YT"(n 2 )" 

These polynomials were first introduced by Regev in [9]; in that  paper the 

author studied the polynomial identities of the algebra Mn(K) through its 

cocharacter sequence and the polynomials F ~," arose naturally as polynomials 

associated to Young tableaux of rectangular frames of height n 2. 

Since F x," is a multilinear polynomial which is alternating in the two sets 

of variables {Xl , . . . ,  xn2 } and {Yl,-- . ,  y,2}, it follows that  for all A 1 , . . . ,  An2, 

B1, . . . ,  Bn2 • M,~(K), F~" (A1 , . . . ,  An~,B1, . . . ,  B,2) lies in K,  the center of 

M , ( K )  (see [9, Lemma 2•1]). This leads to the following 
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PROBLEM: Classify all partitions A, # ~ n 2 for which F~'U(x, y) is a central 
polynomial for M~ ( K). 

We will translate this problem into a problem of matrix invariants through the 

following easy observation: let tr  denote the usual trace; since F ~'~ takes only 

central values in M~(K),  then F ~," is a central polynomial for Ms(K) if and 

only if t r (F  x,") does not vanish in M~(K). 
About previous results, Regev in [9] conjectured that if ~ is the parti t ion 

(1, 3 , . . . ,  2n - 3, 2n - 1) then F~'~(x, y) is a central polynomial for Ms(K) ;  later 

this conjecture was verified by Formanek in [3]. We shall see that  Regev's polyno- 

mial F ~,~ plays a fundamental role in the classification of the central polynomials 

of the type F ~,'. 

If A ~ n 2 w e  say that  A is b -der ived  if, after a rearrangement of the parts of 

A, either A -= 6 or A is obtained from 5 by splitting some parts of 5 into two or 

more parts. 

We shall prove that  if A,/~ ~ n 2 are such that  h(A) = h(#) and either A or # is 

not b-derived, then F ~," is a polynomial identity for M~(K). Moreover, in case A 

and # are both b-derived we shall give an explicit formula (involving characters 

of the symmetric group) through which it is possible to check whether F ~," is 

a central polynomial or a polynomial identity. As an application we shall give 

a class of central polynomials corresponding to certain partitions of n 2 in n + l  

parts. 

Our proof will be based on Formanek's construction of certain homomorphisms 

of the ring of matr ix invariants (see [3]) and we shall follow his approach closely. 

2. The  ring of  invariants 

Let W be the direct sum of r copies of M~(K). Let the group GL(n, K)  act on 

W via (adjoint action) 

(A1, . . . ,  A~) --* (PAIR-I, . . . ,  PA~P-1), 

where A1,..., AT • Ms(K) and P • GL(n, K).  If K[W] is the symmetric algebra 

of W over K,  the ring of invariants K[W] GL(n'K) is called the ring of invariants 

of r n × n matrices and is denoted C(n, r). If W is replaced by an infinite number 

of copies of M~(K), then the fixed ring is called t h e  r ing  o f  i nva r i an t s  o f  n x n 

m a t r i c e s  and is denoted by C. 
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The ring of invariants can be defined in terms of generic n × n matrices. Let 
{ ( 0  uij I 1 <_ i, j <_ n, l >_ 1} be a set of independent commuting indeterminates over 

K[u}~. )] the polynomial algebra over K; for I _> 1,Xl = (u}~)) E Mn(K[u}~)]) K and 

is called a generic n × n matr ix  over K.  

If  P E GL(n,  K)  and P X l P  -1 = ,tK!()~:j j, then the action of GL(n, K)  on K[u}~ )] 

given by u}~ ) -~ =(t)a~j and C = K[u![)ICL(n'K)-- L-,~ ~ is the ring of matr ix  invariants. is 

In invariant theory, a theorem giving a generating set for a ring of invariants 

is called a first fundamental theorem. In this case we have 

THEOREM (First Fundamental  Theorem of Matrix Invariants [6, Theorem 1.3]): 

C is generated as a K-algebra by the traces t r(Xi 1 . - -X i , )  where X~I . . .  Xis is a 

monomial in the generic matrices X1, X2, . . . .  

A second fundamental theorem in invariant theory gives the relations among 

the invariants. Since char K -- 0, the multilinear relations determine all rela- 

tions and we will state a second fundamentM theorem of matr ix  invariants giving 

multilinear relations among the generators. To state this theorem in a precise 

way we introduce some terminology. 

Recall tha t  A = (A1, . . . ,  fl,~) ~ r is a proper partition of r if A1 >_ A2 >_ " '"  > 

/~m • 0 and we write A t- r. If  K S~ is the group algebra of the symmetric group 

S~ over K then 

KS~ = ( ~ I ~  
)d-r 

where I~ is the minimal two-sided ideal of KS~ corresponding to A ~- r and we 

set 

J ( n , r ) =  ( ~  I~. 
),~-r 

h(~)>~ 

Let r E S~ and write ~r as a product of disjoint cycles (including 1-cycles) 

= 

We define the trace monomials T,  = T , (X1, . . . ,X~. )  e C associated to the 

permutat ion ~r as 

T , ( X 1 , . . . ,  Xr)  = t r (Xi , . . .Xia~ ) t r (Xj~ . . .X jk  ~ ) . . .  t r ( X h . . .  Xlkt ). 

Let C(r) be the subspace of C consisting of all the elements multilinear in 

X I , .  • •, X~.  
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THEOREM (Second Fundamenta l  Theorem of Matr ix  Invariants  [6, Theo rem 4.3], 

[8, Proposi t ion 1]): I f ~ :  KS~ -* C(r) is the K-linear map defined by 

F_, 
~6S~ ~6S~ 

then Ker 9~ = J(n,  r). 

Let us write KS,. = KS~ /J (n ,  r) and let O~: K S ,  ~ C(r) be the corresponding 

linear i somorphism induced by ~. Then  C(r) becomes a left and right S~-module 

(see [3]). 

If  we r ename  the first 2n 2 generic matr ices  as X I , .  • . ,  X ,~ ,  YI,- . - ,  Y ~ ,  then  

our original p rob lem can be t rans la ted  into the following: 

PROBLEM: Classify all partitions A, # ~ n 2 such tha t  

t r ( F ~ ' ' ( X 1 , . . . ,  X~2, Y1 , . . . ,  Y~2)) 

is a nonzero matrix invariant. 

3. T h e  d i s c r i m i n a n t  

Recall  t h a t  if A1 = ,(a!!)~'~3 , " ' " A ~ 2  = (al~ ~)) are n x n matr ices  then the 

d i s c r i m i n a n t  of A1,.  • . ,  An~ is the de te rminan t  of the n 2 x n 2 mat r ix  whose 

i - th  row is 

a l l ,  a 1 2 ,  • • • ,  ~ l n ,  a , • • •, ~n, 

and it is denoted A(A)  = A ( A 1 , . . . ,  An2). 

If  X 1 , . . . ,  X~2 are generic n x n matrices,  then A ( X 1 , . . . ,  X~2) is a mult i l inear  

a l te rnat ing  function of the X~'s and A ( X 1 , . . . ,  Xn2) 6 C ( n  2) (see [3, L e m m a  3]). 

Now, if A = (A1, . . . ,A,~)  ~ n 2 let A = ( A m , A ~ - t , . . . , A 1 )  ~ n 2 and,  in 

general, if ~- 6 S~ set A; = (A~(1), . . . ,  A~(m)). For A ~ n 2 define A~ 6 C ( n  2) by 

A ~ ( X 1 , . . . ,  Xn2) = E ( s g n T r ) t r ( X ~ ( 1 ) . . . X ~ ( ~ ) ) t r ( X ~ ( ~ + l ) - . - X . ( ~ + ~ 2 ) )  
~rES~e 

• " t r (X~(~l+ . . .+~_~+l )  • • • X~(~) ) .  

Notice t ha t  our definition of A~ for A b- n 2 differs from the one in [3] in the 

order in which the generic matr ices  appear:  in the te rminology of [3] A~ would 

be called A~. 

In  the sequel we shall always write 6 = (1, 3 , . . . ,  2n - 3, 2n - 1) ~ n 2 and, so, 

= ( 2 n -  1 , 2 n -  3 , . . . ,  3,1) ~- n 2. 
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Remark:  Let  a = il  i2 . . -  i~ E St.  Consider a as the word i l i 2 " " i ~  

and write a = B~B2. . .  Bt where each B~ is a subword consisting of increasing 

consecutive integers. Notice tha t  if a '  is obtained from a by exchanging two 

consecutive subwords one of even length then sgna = sgna' ;  while if bo th  sub- 

words have odd length then sgne = - s g n a ' .  It follows tha t  sgna = sgnT where 

r = Bq . . .  B~B~+~ . . .  Bt~ and B ~ , . . . ,  B~, are all subwords of a among the B~'s 

of odd  length (l~ < 12 < --- < l~). Order  now the words B b (1 _< j <_ s) in the 

obvious way, tha t  is, by requiring tha t  Bi < B~ iff a < b for all a ~ Bi and b ~ B~ 

and let B ~  < B ~  < . . .  < B k .  Then  it is clear tha t  

sgna = sgnr = sgn ( kl k2 ""  k~ ) 
11 12 ""  l ~  " 

The  following result is a consequence of [3, Theorem 4]: 

PROPOSITION 1: Let  A ~ n2,h(A) = m. 

(1) I f  for ali T ~ Sm,A~ ¢ 6, then A~(X1, . . .  , X ~ )  = O. 

(2) I f  there exists v ~ Sm ~--- Sn such that A~ = 6, then 

A ~ ( X 1 , . . . ,  X,2)  = ( sgnT)CnA(X1 , . . . ,  Xn2), 

where C,~ is the nonzero constant computed in [3]. 

Proof: Let  A ~- ( A I , . . . ,  Am). If we set Ao = O, we can write 

A)~(XI , . . . ,  Xn2) -- E (sgn~r)tr(X~(1) " ' ' x M ~ ) ) t r ( X ~ r ( ~ + x )  ""X~(~,+x2)  ) 
~rES~2 

• "- t r (X~(~l+- .+x. ,_l+l)  • • • X~(n~)) 

= E (sgn~r)tr(X~(~l+'"+~¢l)-l+l)'"X~(~l+'"+~(1)))tr(X~(~+'"+~¢2)-~+l) 
~rES ~2 

• -. X~(~I +...+~(2)) ) " "  tr(X~(~l +...+x~(~)_l + 1 ) " "  X~(~I +...+x~(~))) 

= (sgnT') E (sgnr)tr(X~(1) '"Z~(x~o,)) '" tr(Z~(~(~)+l) '"X~(x~(~)+~(2))  
~rES~2 

• - • t r (X~(~(~)+._+~(~)_~+l)---  X~(~2)) 

= (sgn~-')Ax~ ( X x , . . . ,  X,2) ,  

where T' is a permuta t ion  computed  according to the previous remark.  We now 

apply [3, Theorem 4]: if A~ ¢ 6, for all T E Sm, then A~(X)  = 0; if there  exists 
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T • S,~ such tha t  A~ : 6 then, since all the par ts  of 6 are of odd length, ( sgnr ' )  

= (sgnT) and we have 

A ~ ( X )  = ( s g n T ) A ~ . ( X )  = (sgn~-)A~(X) = (sgn~')C~A(X).  | 

4. & d e r i v e d  p a r t i t i o n s  

We fix some notat ion:  if p E Sm we write p as a p roduc t  of disjoint cycles, 

including 1-cycles, 

p = (i1""" is l ) (J l""  "Js2)" "" ( / 1 "  "Is,) 

and we make this nota t ion unique by requiring tha t  i l , j l , . . . , / 1  are the least 

elements in each cycle and il <: j l  < "'" < 11. 

Let now A ~ n 2, h()~) = m and let p E Sm be wri t ten as above. We define a 

new par t i t ion  A(p) ~ n 2 by sett ing 

)~(P) : (A~ 1 + • "" + Ai~l, )~jl + "" " + ;~J~2' " " "' )~h + "'" + )~,~ ); 

we also write A (p) = (A~P),...,)~(o)). 

We say tha t  a par t i t ion A ~ n 2,h(A) = m is 6 - d e r i v e d  if there exist 

permuta t ions  p • S,~ and T • S ,  such tha t  (A(P))~ : 6. In  other  words A is 

6-derived if there exists ~- • Sm such tha t  either A, = 6 or A~ is obta ined from 

6 by split t ing some par ts  of 6 into two or more parts. For a 6-derived par t i t ion  

A ~ n 2, h(A) = m, we define 

B~ -- {p • S m  ] (A(P))~ ---- 6, for some T • S,~}. 

Let ), ~ n 2 be &derived, p • B~ and (A(o))~ -- 6. Write  p as a p roduc t  of 

disjoint cycles 

p : ( i l . . . i , ~ ) ( j l . . . j ~ 2 ) " ' ( l l . . . l ~ , ) ,  

and let a • Sn~ be the permuta t ion  defined by the rule 

~i + ~2 + "'" + Ai t - I  + a if )~il -~- ' ' '  ~- ~ i $ _ i  -~ 1 <: a <: Ail+ "" + ),i~ 
for t = 1, . . . ,Sl 

~(~)  = 

~1 "Jc )~ 2 "~- " " " "~ ~ j t --1 -~- a ifAi~ + . . . + £ i , x  +Ajl + . . . + A j t _  ~ + I  

< a < )~il -~- . . .  -~ )~is I -~ ~ J l  -Jc . . .  -~- ~ J t  

for t----- i , . . . , s2  

)~1 -~ A2 + ' ' '  + A l t - I  -~- a ifAil + " ' + ~ j l  +'''+~11 +'"Ah_1 +I  
<:a < n  2 

for t = 1 , . . . , s t  
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where we are assuming Ao -- Ajo . . . . .  At 0 : 0. We then define ¢(A, p) : 

(sgna) (sgnT). We remark that  the sign of ~r is computed according to the remark 

above. With the notation introduced above in mind we prove the following 

LEMMA 1: Let A ~ n2, h(A) = m and p 6 Sin. Then 

Z (sgnlr)Tp(X~o) " " "X~(~), X~(~+I)" "" X~(~I+~) , . . . ,  
~rES~ 

X~(~+. .+~_~+1)  "'" X~(~)) 

f e(A,p)C~A(X1, . . . ,X,~)  ira isf-derived and p ~  B~ 

l o o~herwise. 

Vroo~ Write p = ( ~ x . . . i S l ) ( J x . . . j s ~ ) . . . ( [ 1 . . . ] s ~ )  aS a product of disjoint 

cycles. We have: 

E (sgn~r)Tp(X~(1)...X~(~I), X l r ( A l + l )  • " " X ~ r ( A I + A 2 ) ,  • • • , 

7rESt2 

XTc(AI+...+A~_I +1)""" X~r(n2)) 

= E ( sgnTr ) t r (X ' (~ l+"+~ ' l - l+x ) ' "X ' (~+ ' "+~ l )  
7rESe 

• .. X~(~I+ + x ~  -1+1)""  X-(~+-..+x,. 1 )) '"  • tr(X~(~+...+x~_~ +1) 

• . . X q r ( ~ l + . . . + ~ / 1  ) " . . XTf(Z\l+,. .+~ls r - 1 + 1 )  " . . XTr(~l+. . .+~ls  ~ )) 

= ~ (sgnTr)tr(X~o-l(1)'"X~o-~(~,~)'"X~o-~(~l+...+~,~-~+l) 
7rESn2 

"'" X~°-~(~'I +'"+~'~1 ) ) " "  tr(X~o-l(~,l +'"+~J~ +"+~,1-1+1) "'" X~o-~(~2)) 

=A~(.) (Xo-l(1),... , Xo-l(n2)) 

=(sgn~)A~(,) (X1 , . . . ,  Xn2) 

where ~r is the permutation defined right before the Lemma. By Proposition 1, 

A~(,) = 0 unless (A(P))r = 5 for some T G S~, i.e., unless A is f-derived and 

p E B~. The conclusion now follows from Proposition 1. I 

5. The function ¢~: C(m) --* C(m) 

We now rename the first m + n 2 generic matrices X 1 , . . . ,  X,~, Y1,- . . ,  Yn2, and 

we let Sm be the symmetric group on {1 , . . . ,m } ,  S.~ the symmetric group on 

{1" , . . . ,  n 2. } and S,~+~ the symmetric group on {1 , . . . ,  m, 1 " , . . . ,  n2*}. 
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If A ~ n 2, h(A) = m, define the function 

c(m) + n 

such that  

289 

~6Sm 

Since ~A is a left Sm-module homomorphism, for all p 6 Sm we have 

• ~(T~(X, , . . . ,Xm))  = E aoT, o (X t , . . . ,Xm) .  
oES,,~ 

Hence, if I denotes the identity n x n matrix, 

~ ( T p ) ( I , . . . , I ) =  E aoTpo(I, . . . , I) .  
a6S,,~ 

For T 6 Sin, let z(T) denote the number of cycles in the decomposition of r into 

disjoint cycles. Then, since T~-(I,..., I) = m zO), we get 

• ~ (T , ) ( I , . . : , I )=  E a~m~(P°)" 
aESm 

We now prove 

P~(f) = X: (signrr)f(XlY~(l*)'"Y'~(xD' X2YTr(A~ +1.) 
7rCSa 

. . .  Y,~ (~¢ +~ ) , . . . ,  XmY,~ (x; +...+;~_, +1. ) "'" Y,~ (n= *) ). 

The following Lemma holds 

LEMMA 2 ([3, Lemma 6]): If f E C(m), then there exists a unique f = 

/ ( X 1 , . . . ,  X,~) 6 C(m) such that F~(f) = ]A(Y1, . . . ,  Yn2). 

Define maps 

• ~: C(m) --+ C(m) and ~ :  KS~  --+ KS,,~ 

such that  ~ ( f )  = ] and ~0 ~ = Oal~aOm. We have: 

PROPOSITION 2 ([3, Theorem 8]): The maps ~ and ~0 ~ are left Sm-module 

homomorphisms. 

As in [3] we now compute ~ (T1) .  Let us write 

~'X(T') = E aoTo. 
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LEMMA 3: Let  A ~ n 2, h(A) = m and p E Sin. Then 

Proof" 
get 

aomZ(P°) = { ; (A'p)Cn 
aESm 

i fA is &derived and p E Bx 
otherwise. 

Write  A(Y)  = A ( Y I , . . . ,  Yn2). Recalling the definition of F ~ and (I) ~ we 

+~(Tp)(I,..., I)A(Y) =r~(Tp)(I,..., I, Yl,..., Yn~) 
= ~ (sgnTr)Tp(Y,(I")'"Y,(~D,Y,(~;+,*) 

~rES~2 

"" • Y,(~;+~;),  - • •, Y,(x;+...+x:~_~+l*) " "" Y, (~*) ) .  

By  L e m m a  1 we obta in  t ha t  

@~(Tp)(I,..., I ) A ( Y )  -- {;(A,p)CnA(Y) otherwise.if A is &derived and p E Bx 

The  p roof  now is comple ted  by recalling tha t  O~(Tp)(I,...,I) = 
~-~aESm aamZ(P°)" | 

Since ¢)~(T1) = ~ o e s ~  aoTo then  

(I)o~(1)---- ~ aaa E KSm. 
aES~ 

We now apply  the previous lemma;  let us write 

(zooo)(z++): Z aomZ(P)ap_ 1 
a,pES~ 

Z aom~(palp_ 1 
a,pESm 

{ C. ~_, e(A,r)r -1 if A is &derived 
= rEB~ 

0 otherwise.  

Since 

m:(P)p E Z(KSm), 
pE S,,~ 
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where Z(KSm) is the center of KS,, ,  and ~ mZ(P)p is invertible (see [3, p. 
pES~ 

103]), we get 

Cn(~pEs~ mZ(P)P) -1 ~-~EB~ e(A, r)7 -1 if A is &derived 
(1) E aac r [ 0 otherwise. 

a 6 S,~ 

A formula for (~pes~ mz(P)P) -I can be derived as in [3] and we now describe it. 

Let V be a K-vector space, dimKV = m and let S,~ act on the tensor space 

V ®m by place permutation, i.e., 

o(vl ®. . -  ® vm) = vo-,(1) ® " "  ® vo-l(m). 

Call P the character of the induced Sin-representation. Then if a ~- m and 

X~ is the corresponding irreducible Sin-character, by [5, p. 192] we get that the 

multiplicity of Z~ in P is given by the formula 

where (i, j)  are the coordinates of the nodes of the diagram of a and h~ are the 

associated hook numbers. Recall that (P, Z~> is also the number of semistandard 

tableaux of shape a and content 1, 2 , . . . ,  m. By [3, p. 104] it follows that 

(~--~ I -i 1 X~ (1)2X~ (p) 
mZ(P) P -- ~ E P" 

\ , e s .  / (rn!)2 pes~ ~em <P, X~> 

Thus recalling that @~(T1) = ~a~To,  from (1) we get that @~(T1) = 0 unless A 

is &derived and, in this last case, 

• - C .  (m!)2 ~ E e(A,T) ~ X~(1)2X~(P)Tp~-~. 

Hence we can write 

PROPOSITION 3: Let A ~ n2, h(A) = m. lEA is not 6-derived, @X(T1) = O. HA 

is 6-derived then 

@~(T1)- C.  oe~s,~ ( Xc~(1)2X,~(o"r) , .  ,'~ 



292 A. GIAMBRUNO AND A. VALENTI Isr. J. Math. 

6. T h e  m a i n  t h e o r e m  

We can  now prove the  m a i n  resul t .  

THEOREM 1: Let A, # ~ n 2, h(A) = h(tt) = m. I f  either A or # is not 5-derived 

then F~,~(x, y) is a polynomial identity for M~( K) .  I f  both A and # are  &derived 

then F a , ~ ( x ,  y) is a central polynomial for M~( K)  if  and only i f  

E E X'~(1)zX~((mm - 1 . . . 2 1 ) a T ) e ( A , a ) e ( p , T  ) ¢ 0. 

~EB,u 

As we p o i n t e d  ou t  before F ~,I' (x, y) is a cen t ra l  p o l y n o m i a l  if a n d  o n l y  Proof: 

if  
. .  ]/2 t r ( F a ' " ( X l , . . . , X ~ , Y 1 , .  , ~ ) )  

is a non-ze ro  inva r i an t .  

Wr i t e  ~"(T1) = ~-]~oes~ aoTo; then ,  for all  p • Sin, ~"(To) = ~ o e s ~  aoTpo 

a n d  we c o m p u t e  

E (sgnTr)tr(X1Y~(1) '"Y~(m)X2Y~(m+l) '"Y~(m+,2)  
r6s~2 

" " " XmY~(,l+...+,~_l+l) " " " Y~(n2) ) 

= 

= Z .... Io (X l , . . . ,Xm)A(V) .  
a6Sm 

Now make the substitutions 

X1 --* X 1 X 2 . . .  X~I 

X 2 ~ X ) u +  1 • • • X A I + A  2 

Xm -+ X ) u + . . . + ; ~ _ ~ + l  "" "Xn 2 

a n d  s k e w s y m m e t r i z e  w i t h  respec t  to X 1 , . . . ,  X~.  We  get 

E (sgnT)(sgnTr)tr(Xr(1)' ' 'Xr(xl)Y~(1)' ' 'Y~(tal)Xr(~l+l) "'" 
r,lr6S,,2 

X ' ( ~ + ; ~ ) Y ' ~ ( m + I )  " " " Y ~ ( , ~ + m ) " "  

X.c(.xl+...+)~_a+l)'" Xr(n2)YTr(,x+...+,m_l+l) " "  Y~(n2)) 

= E ao E (sgm')T(12 . . . .  )~(X~-o)..'X~.()u),X~.(:~+I ) 
a6S~ ~-6Sn2 

• . • X~-(AI+A2), . . . , X-r(AI.+...+A~_I+I) " " " X~-(n2))A(Y). 
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Observe that  in the last equality the left hand side is equal to tr(FX'~(X, Y)) -- 

t r (F~ '~(X1, . . . ,  Xn2 ,  Y 1 , . . . ,  Yn2)) • 

If # is not b-derived, then by the previous proposition ¢~(T1) -- 0 and by the 

above computation also tr(F~,~(X, Y)) -- 0; hence F~,~(x, y) is a polynomial 

identity in this case. If A is not b-derived then by Lemma 1 

( s g n T ) T ( 1 2  . . . .  ) a ( X T ( 1 ) " . X ~ ( ~ I ) , . . .  , z r ( A l + . . . + ; ~ _ x + l ) - ' - x r ( n 2 ) )  -- 0 

r e s t 2  

and also in this case t r (F~" (X ,  Y)) = 0 and FA"(x,  y) is a polynomial identity 

for M~ (K). 

Suppose then that 

Proposition 3 we get 

t r (F  ~' '  (X, Y)) 

=cn 
(12...m)a6B~ 

- 

(12"'m)aEB A O~ [- ~"~ 
vEB~ 

and the conclusion of the theorem follows. 

A and # are both b-derived. Then by Lemma 1 and 

aoe(A, (12 . . -m)a)A(X)A(Y)  

X~(1)2x~(aT)~ e(z,'" (12 • .. m)a)e(#,  r ) A ( X ) A ( Y )  

| 

7. Consequences  

We now consider a special case of the previous theorem. 

COROLLARY 1: Let A ~ n 2 be obtained from b by splitting the k-th part (of 

length 2k - 1) into two parts of length, say, 2(k-t) and 2t - 1 respectively. Then 

F~'~(x, y) is a central polynomial provided 

X~(1)=(X'~(a) - X~(rrlrr2)) 

where a = (n + 1)-cycle and 7rl, zr2 are disjoint cycles of length (k - t) and 

(n - k + t) respectively. 

Proof: A is obviously b-derived and B~ = {(kk+l) ,  (tk)}. Now, e(A, (kk+l) )  -- 1 

and e(A, (tk)) = -1;  also ( n + l n - . .  321)(kk+1)(tk)  can be written as the product 

of disjoint cycles of length (k - t) and (n - k + t) and (n + l n . . .  321)(tk)(kk ÷ 1) 

is an (n + 1)-cycle. The conclusion now follows from the previous theorem. | 



294 A. G I A M B R U N O  AND A. VALENTI  Isr. J. Ma th .  

To check if 
K "  X~(1)2(Xa(a) - X,(;rl;r2)) # 0 

a l - n + i  ~ (P, X-) 

one has to invoke the Murnagham-Nakayama formula ([5, Theorem 2.4.7]) and 

the hook formula ([5, Theorem 2.3.21]). It is easy to see that if a l- n + 1 and 

the Young diagram of a is not included in the shape 

(ki,k2,3,2k3,1 k') = ~ ]  

then X~(a) = )C~(Trl~r2) = 0. 

We shall carry out the computation of the sum in the previous corollary in the 

special case when either t = k - 1 or t = 1 and k = n. We have 

COROLLARY 2: Suppose that either A = (1,3, 5 , . . . ,  2n - 3, 2n - 2, 1) ~ n 2 or 

A-- (1, 3 , 5 , . . . , 2 ( k -  1) - 1, 2 , 2 ( k -  1) - 1,2(k + 1) - 1 , . . . , 2 n -  1) ~ n 2, 

i.e., A is obtained from 6 by spfitting one of its parts into two parts one of length 

2. Then F~'~(x, y) is a central polynomial for Mn(K) .  

Proof'. In these cases, recalling that  (see [3, p. 105]) if ~ is a (n -b 1)-cycle, 

xa(X)2xa(a) = (_1),~ n +___~1 

a t " n - t - 1  (P, X~) 2n + 1' 

we get that  F ~,x (x, y) is a central polynomial provided 

( _ l )n  n + : 
2 n + 1  

Q'l-n+l 

where r is an ( n -  1)-cycle. 

Now, X~(~r) can be computed by using [5, 2.4.7] and [5, 2.3.17]: consider a as 

a Young diagram on n + 1 boxes; if, by erasing two boxes from the rim of a ,  the 

remaining diagram is not a hook (i.e., of the form (i, n - i + 1)), then X~(Tr) = 0. 

Also a direct computation shows that  for 2 < i < n - 1, X(~,2,1.-,-1)(Tr) = 0 and 

for 2 < i < n, X(~,l~-,+l)(~r) = O. 
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Thus  the only Sn+l-Characters  giving a nonzero contr ibut ion to the above sum 

are those corresponding to the following part i t ions:  

( n +  1) 

(n, 1) n >_ 2 

(n - 1, 2) n > 4 

( i ,3 ,1  n - i - 2 )  i_> 3, n >  5 

(i, 22, 1 n - i - 3 )  i > 2, n > 5 

(22, 1 n-3)  n > 4 

(2, I n - l )  n >_ 2 

(1 ~+1) 

We then  compu te  the following tableau:  

(1) ~" (P, - )  

~(,~+1) 1 1 (2n+l).T 
n!(rt+l)! 

~(n,1) n 1 (n+l)!(n-1)! 

(~+1)(n-2) -1  (~+1)(2~-1)! 
~(n--l,2) 2 2(n--1)~!(n--3)! 

(n+1)!(i-2) ( _ l ) n _ i + l  (n+l)(n+2)(i-2)(n+i)! 
)~(i,3,1 n-i-2) 2(n--1)(n--i+l)(n--i--2)!i! 2(n--1)(n--i+l)(i+l)](n--i--2)li! 

(n+O,(,~-~-2) n(,~+l)(~,-i-2)(~+O: 
X(i,22,1n-i-3) 2(n-1)(i+l)(n-i)!(i-2)! (--1) n -~+ l  2(n-1)(i+l)(i-2)!(i+l)!(n-i)! 

(n+l) (n-2)  ( _ t )n+ l  
X(22 ,i n-3)  2 

X(2,1~_1) n (--1) n n(n + 2) 

1 ( -1 )  ~ 1 X(1~+1) 

(~t-[-1)2 (n2--4) 
4 

where as a runs over all the above par t i t ions  of n + 1, the columns of the  t ab leau  

represent  the  values of X~(1), X~(Zr) and < P, X~ > respectively. 

Summing  over all par t i t ions  of n + 1 we then obta in  a nonzero sum for n < 4 
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and, for n > 5, we get 

n + l  
(-1)'~ 2n + 1 

( "~'-1"~+1 (2n + 1)(n + 2) 
+ 

_ ( n +  1 ) ! ( n -  2)!× 
2 

n-5 ( - 1 ) J ( n -  j - 4) ( n - j - 3  

"j~o j ! ~ - n - - - 7 - - - 3 ~  + 3) j -~  

- E X~(1)2X~(Tr) 

~-n+l (P,x~) 

n 2 + 6n + 2 (n + 1)!n!(2n 2 - 5n - 4) 

(2n + 1)! 

n(n - j - 1) 

(n 2) ) 

By using Zeilberger's identity_prover.maple which is an implementation of the 

method described in [10], it can be shown that the above function is equal to 

( - 1 ) = + 1 3 ( n + l ) ( n  2 - 2 n + 2 ) .  

( n + 2 ) ( 2 n - 3 ) ( 2 n -  1) 

hence it is nonzero. | 
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