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ABSTRACT
Let K be a field, char K = 0 and M, (K) the algebra of n X n matrices
over K. A= (A1,...,2dm) and g = (u1,. .., ftm) are partitions of n? let

FMH = Z (gD OT)To(1) " " Ta(A)Yr(1) " Yr(p1)To(Ay +1)

o, 7TES 2
T+ A2)Yr(pi41) YT (e tp2)
T To(Art e Am o1 +1)
U To(n2)Yr(pid o tpm o1 +1) T Y (n2)
where x1,...,2,2,¥1,...,Y,2 are noncommuting indeterminates and 5,2

is the symmetric group of degree n?.

The polynomials F*#, when evaluated in M, {K), take central values
and we study the problem of classifying those partitions A, u for which
FX# is a central polynomial (not a polynomial identity) for Mn(K).

We give a formula that allows us to evaluate FA# in M, (K) in general
and we prove that if A and p are not both derived in a suitable way from
the partition § = (1,3,...,2n — 3,2n — 1), then FX# is a polynomial
identity for M,(K). As an application, we exhibit a new class of central
polynomials for Mn(K).
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1. Introduction

Let K be a field of characteristic zero and K {X } the free algebra on the countable
set X = {z1,zs,...}. Let M,(K) be the algebra of n X n matrices over K.

Recall that an element f(z1,...,2,) € K{X} is called a central polynomial
for M,(K) if for all A;,...,An € Mn(K), f(A1,...,Ap) lies in the center of
M, (K) and f is not a polynomial identity for M, (K) (i.e., f takes on nonzero
values).

The first central polynomials for M, (K) for any n were constructed by
Formanek ([2]) and Razmyslov ([7]) with two different methods. Other central
polynomials were produced by Halpin ([4]) by exploiting the methods of [7] and
recently by Drensky ([1]) who constructed new central polynomials of minimal
known degree for any n.

In this paper we study a class of polynomials associated to pairs of partitions
of n? and, as a consequence, we construct a new class of central polynomials for
M,,(K) multilinear and alternating in two sets of variables.

Let {y1,y2,-..} be a new set of noncommuting variables. Recall that if r is a
positive integer, an (improper) partition of r is a sequence of positive integers
A= (A1,..-, Am) such that Y70 X; = 7. We write A = r and h(A) = m. Let
S, be the symmetric group on {1,2,...,7}. For each pair of partitions A, p |= n?
such that h(A) = h(s) = m define the polynomial

Fh# = Z (SgnffT)wo(l)"'%(,\,)yf(n"'?/f(pl)l‘a(,\lﬂ)

o0,7€S 2
T To(Ar+A2)Yr (i +1) T Yr(prtus)
" To(ArtFAmo1+1)

. xo(nz)gjf(m.,_....,.,,m_l_'.l) e y.,(nz).

These polynomials were first introduced by Regev in [9]; in that paper the
author studied the polynomial identities of the algebra M, (K) through its
cocharacter sequence and the polynomials F*'* arose naturally as polynomials
associated to Young tableaux of rectangular frames of height nZ.

Since F** is a multilinear polynomial which is alternating in the two sets
of variables {z1,...,Zn2} and {y1,...,¥Ynz}, it follows that for all Aj,..., An2,
Bi,...,Bp2 € Mu(K),F**(A1,...,Ap2,By,...,By2) lies in K, the center of
M, (K) (see [9, Lemma 2.1)). This leads to the following
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PROBLEM: Classify all partitions A\, u &= n? for which FM*(x,y) is a central
polynomial for M,,(K).

We will translate this problem into a problem of matrix invariants through the
following easy observation: let tr denote the usual trace; since F>* takes only
central values in M, (K), then F»* is a central polynomial for M, (K) if and
only if tr(F»*) does not vanish in M, (K).

About previous results, Regev in [9] conjectured that if § is the partition
(1,3,...,2n —3,2n — 1) then F%%(z,y) is a central polynomial for M, (K); later
this conjecture was verified by Formanek in [3]. We shall see that Regev’s polyno-
mial F%? plays a fundamental role in the classification of the central polynomials
of the type FM~,

If A = n? we say that ) is §-derived if, after a rearrangement of the parts of
A, either A =6 or ) is obtained from § by splitting some parts of é into two or
more parts.

We shall prove that if A,  |= n? are such that A(A) = k() and either A or p is
not §-derived, then F** is a polynomial identity for M, (K). Moreover, in case A
and p are both §-derived we shall give an explicit formula (involving characters
of the symmetric group) through which it is possible to check whether FA# is
a central polynomial or a polynomial identity. As an application we shall give
a class of central polynomials corresponding to certain partitions of n? in n+1
parts.

Our proof will be based on Formanek’s construction of certain homomorphisms
of the ring of matrix invariants (see [3]) and we shall follow his approach closely.

2. The ring of invariants

Let W be the direct sum of r copies of M,(K). Let the group GL(n, K) act on
W via (adjoint action)

(A1,...,A.) = (PALP7Y,...,PAPY),

where Ay,...,A. € M,(K) and P € GL(n, K). If K[W] is the symmetric algebra
of W over K, the ring of invariants K[W]SL(%X) is called the ring of invariants
of 7 n x n matrices and is denoted C{(n,r). If W is replaced by an infinite number
of copies of M, (K), then the fixed ring is called the ring of invariants of n xn

matrices and is denoted by C.
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The ring of invariants can be defined in terms of generic n x n matrices. Let
{ug.) |1<14,5 <n,l>1} beaset of independent commuting indeterminates over
K and K[ug)] the polynomial algebra over K; for [ > 1, X, = (u (l)) €M, K[u(l)]
is called a generic n X n matrix over K.

If P € GL(n,K) and PX;P7! = (w (l)) then the action of GL(n, K) on K|u (l)]

(t)]GL(" K) is the ring of matrix invariants.

is given by u{) - u() and C = K[u
In invariant theory, a theorem giving a generating set for a ring of invariants

is called a first fundamental theorem. In this case we have

THEOREM (First Fundamental Theorem of Matrix Invariants [6, Theorem 1.3]):
C is generated as a K-algebra by the traces tr(X;, --- X;,) where X;, --- X, isa
monomial in the generic matrices X, Xa,.. ..

A second fundamental theorem in invariant theory gives the relations among
the invariants. Since char K = 0, the multilinear relations determine all rela-
tions and we will state a second fundamental theorem of matrix invariants giving
multilinear relations among the generators. To state this theorem in a precise
way we introduce some terminology.

Recall that A = (A1,...,\n) = 7 is a proper partition of r if Ay > Ay > -+~ >
Am > 0 and we write A - r. If K'S, is the group algebra of the symmetric group
S, over K then

= @ I

X A7
where I, is the minimal two-sided ideal of K S, corresponding to A - r and we

P b

AFr
h(A)>n

set

Let 7 € S, and write 7 as a product of disjoint cycles (including 1-cycles)
= (i1 ik )1 Jay) - (i)

We define the trace monomials T, = Tp(Xj,...,X,) € C associated to the

permutation 7 as
T,r(Xl, ceey X,-) = tI‘(,Xi1 .. 'Xikl )tr(le .. 'Xjkz) .- -tr(Xll v 'Xlkt)'

Let C(r) be the subspace of C consisting of all the elements multilinear in
X1,..., X,
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THEOREM (Second Fundamental Theorem of Matrix Invariants [6, Theorem 4.3],
[8, Proposition 1]): If ¢: KS,. — C(r) is the K-linear map defined by

Z QnTT — Z o Tn( Xy, .., X0 )y

TES, TES,
then Ker o = J(n,r).

Let us write K S, = KS,./J(n,r) and let ©,: KS, — C(r) be the corresponding
linear isomorphism induced by ¢. Then C(r) becomes a left and right S,.-module
(see [3]).

If we rename the first 2n? generic matrices as Xi,..., X,2,Y1,...,Y,2, then

our original problem can be translated into the following:

PROBLEM: Classify all partitions X, pu |= n? such that
tr(FM( X1, e v ey X2, Y1, .., Yy2))

is a nonzero matrix invariant.

3. The discriminant
Recall that if 41 = (ag;)),‘.‘,Anz = (aE;Z)) are n X n matrices then the
discriminant of Ay,..., A, is the determinant of the n? x n? matrix whose
i-th row is

(a(lil)» a§i2)’ SRR a% agil)v SRR agr)a)
and it is denoted A(A) = A(Ay, ..., A2).

If X1,..., X, are generic n X n matrices, then A(Xy,..., X,2) is a multilinear
alternating function of the X;’s and A(X}, ..., X,2) € C(n?) (see [3, Lemma 3)).

Now, if A = (A, ;) E 02 let A = (A, Amet,---, A1) E n? and, in
general, if 7 € Sy set Ar = (Ar(1), .-+, Ar(m))- For A |= n? define Ay € C(n?) by

An(X1ye s Xn2) = Y (sgnm)tr(Xnqy - X)X r 41 -+ X (g 420))

wES, 2
.. 'tr(X-;r(A1+~~-+>\m_1+l) e X,r(nz)).

Notice that our definition of Ay for A I n? differs from the one in [3] in the
order in which the generic matrices appear: in the terminology of [3] Ay would
be called Aj.

In the sequel we shall always write § = (1,3,...,2n — 3,2n ~ 1) = n? and, so,
§=02n-1,2n-3,...,3,1) F n2
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Remark: Let ¢ = (211 122 Tr € S,. Consider ¢ as the word 4732+ -1,
and write ¢ = B1B;--- By where each B; is a subword consisting of increasing
consecutive integers. Notice that if o is obtained from o by exchanging two
consecutive subwords one of even length then sgno = sgne’; while if both sub-
words have odd length then sgno = —sgno’. It follows that sgno = sgnt where
T=By,---B,By,,, B, and By, ..., By, are all subwords of o among the B;’s
of odd length (I; <l < --- < ;). Order now the words By, (1 < j < s) in the
obvious way, that is, by requiring that B; < B; iffa < bforalla € B; and b € B;

and let By, < By, < -+ < Bg,. Then it is clear that
ki ky - ks
SgNo = sgnT = sgn .
Ii Iy -0 1

The following result is a consequence of [3, Theorem 4]:

PROPOSITION 1: Let A = n? h(A) = m.
(1) If for all T € Sy A; # 6, then Ay(X7,...,X,2) =0.
(2) If there exists T € S,,, = S, such that A, = §, then

A)‘(Xl, .. .,an) = (sgn‘r)CnA(Xl, .. .,an),

where C, is the nonzero constant computed in [3).

Proof: Let A= (A1,..., A\n). If we set A\g = 0, we can write

Ax(X1,y .- Xn2) = Z (sgnm T (Xr(1) - * X (a) )X r(ar41) - X (21 422))
TES, 2

c (X a Ao +1) 7 X (n2))

= Z (ngf)tr(Xw(,\l+.‘.+,\,(1)_1+1) T Xr(Al+~--+/\,(1>))tT(er(/\1+---+«\,(2)_1+1)
Wesnz

te X"\‘()\1+---+>\f(2))) o 'tr(XW(A1+~"+)\-,-(m)-1+1) T Xﬂ'()\1+--'+>\-.-(m)))

= (sgnr’) z (Sgnw)tr(Xﬂ'(l) e XW(Af(l))) o 'tr(Xﬂ(Af(1)+1) T Xﬂ(*ru)-f-/\f(z))
ﬂesﬂz

(X (g b Ay 141 T X (n2))
= (sgn7') Az, (X1,..., Xpn2),

where 7/ is a permutation computed according to the previous remark. We now
apply [3, Theorem 4]: if A, # 4, for all T € S,,,, then A(X) = 0; if there exists
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T € Sy, such that A, = 6 then, since all the parts of § are of odd length, (sgn7’)
= (sgnt) and we have

Ax(X) = (sgnT)Ax_(X) = (sgnr)As(X) = (sgnr)CLA(X). |

4. 6-derived partitions

We fix some notation: if p € S, we write p as a product of disjoint cycles,
including 1-cycles,

p= (i1 85 (J1-dsp) - (- 1s,)

and we make this notation unique by requiring that ¢, j1,...,{; are the least
elements in each cycle and i; < j; < --- < 3.

Let now A |= n2,h()\) = m and let p € S,, be written as above. We define a
new partition A(?) = n? by setting

APy = iy 4 X A o A A R AL

we also write AP) = (AP, ..., A¥).

We say that a partition A = n% h()\) = m is é-derived if there exist
permutations p € S,, and 7 € S, such that (A?)), = §. In other words ) is
é-derived if there exists 7 € S, such that either A\, = § or A, is obtained from

6 by splitting some parts of § into two or more parts. For a é-derived partition
X E n? h(X) = m, we define
By ={p€ Sm | (A\P), =6, for some 7 € S, }.
Let A |= n? be 6-derived, p € By and (A(®), = §. Write p as a product of
disjoint cycles
p= (’Ll . "i81)(j1"'jsz) .. (ll .. -ls,.)a
and let o € S,,2 be the permutation defined by the rule

(A 4+ 4+ A_14a Xy +- 4 A, +1<a A+ 4
fort=1,...,s1

1t

R e e T T R T AR DY A |
<a <Ay, +"'+M,1 + A5 4+ Ay,
U(d):ﬁ fort=1,...,89

ArtAded A mrtae WA b A A AL+
<a<n?
l fort=1,...,s,
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where we are assuming Ao = Xj, = :-- = A, = 0. We then define ¢(A, p) =
(sgno)(sgnt). We remark that the sign of o is computed according to the remark

above. With the notation introduced above in mind we prove the following

LEMMA 1: Let A =n?% h()\) =m and p € S,,,. Then

> (s8nm)To(Xa(r) - Xu(ar)s Xn(ut1) - Xn(agag)r -« o
‘I\'esnz
X Oadedrmor+1)  Xn(n2))

e(A, p)CnA(X1, ..., Xn2) If X is §-derived and p € B,
0 otherwise.

Proof:  Write p = (4145, ){(J1+ " Jsp) - (l1---1s.) as a product of disjoint
cycles. We have:

Z (sgnm) T (X (1) -+ X)) Xe(Ar41) " X (Aatrz)r e« o

TES, 2
Xt Armor 1) Xr(n2))

= Z (Sgnﬂ)tr(X,,(kH_...*.)\il_1+1) . -X,,(A1+...+>\‘.1)
€S, 2
= ~X,,()\1+...+,\i81_1+1) = -_X,r(h.*.....‘.)‘iﬁ1 ) - (X x4 Ay 1 +1)
o X)X ateoth,, 2141) " Xn(aadotrr,))

= Z (sgnm)tr(Xao-101) "  Xro=1(a,) ** “Xro=1(h; Ay, —1+1)
mES, 2

 Xro=100g treg ) (X ro=1 00, by oAy 1 41) T Xmo-1(n2)
=Am (Xo—l(l), RN Xo—l(,n2))
=(sgno) Ay (X1, - - -, Xn2)

where ¢ is the permutation defined right before the Lemma. By Proposition 1,
Ay = 0 unless (/\(p))T = ¢ for some 7 € S, i.e., unless A is §-derived and
p € By. The conclusion now follows from Proposition 1. |

5. The function ®*: C(m) — C(m)

We now rename the first m + n? generic matrices Xy,..., X, Y1,..., Ya2, and
we let Sy, be the symmetric group on {1,...,m}, S,2 the symmetric group on
{1*,...,n%"} and S,, 2 the symmetric group on {1,...,m,1*,...,n%*"}.
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If A |= n?, h(\) = m, define the function

: C(m) — C(m +n?)

such that
Tf) = D (signm) F(X1Yaaey - Yaary, XaVa(as41)
WEsnz
cee Y”(AI+)‘3)’ ey XmY"(AI+"'+)‘:n_1+1*) (R Y,T(n'n)).

The following Lemma, holds

LEMMa 2 ([3, Lemma 6|): If f € C(m), then there exists a unique f =
f(X1,...,X,n) € C(m) such that TM(f) = fA(YL, ..., V).

Define maps
®*: C(m) —» C(m) and ®): KS,, > KSp,
such that ®(f) = f and ®) = ©;,18*0,,. We have:

PrROPOSITION 2 ([3, Theorem 8]): The maps ® and ®} are left S,,-module

homomorphisms.

As in [3] we now compute ®*(T}). Let us write
NTY) = > a,T.
o€Sm
Since ®* is a left S,,,-module homomorphism, for all p € S,, we have
MNT (X1, s X)) = D asTpo(Xi, ooy Xim).
oES
Hence, if I denotes the identity n x n matrix,
MNT) L., I) = Y agTypoll,-.., ).
TESm

For 7 € S, let z(7) denote the number of cycles in the decomposition of 7 into

disjoint cycles. Then, since T,(I,...,I) = m*(™ we get

NTI,..., 1) = Y agm*?),
0ES

We now prove
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LEMMA 3: Let A = n? h()\) =m and p € Sy,. Then

Z amEee) = {e(z\, p)C,,  if X is b-derived and p € B,
° — 10

otherwise.
cES,

Proof: Write A(Y) = A(Y3, ..., Y,2). Recalling the definition of I'* and ®* we
get

NI, ..., DAY) =TNT,){1,...,I,Y1,...,Yy2)

= > (sgnm)Tp(Yare) - Yarry Yaas410)
mES 2

. 'Yﬂ'()\;-i-)\;)’ orey Yﬂ()‘I+"'+A:n_1+1*) e Yﬂ-(n2’))-
By Lemma 1 we obtain that

e\, p)CLA(Y) if X is b-derived and p € B
(I:'A(TP)(I’ - DAY) = {0( ¢ ™ otherwise. ’

The proof now is completed by recalling that ®*(T,)(I,...,I) =
Sowes,, Gem 7). |

Since ®*(T1) = Y, s, @oTo then

We now apply the previous lemma; let us write

Y a,mgp?

(Z aao) Z mz(p)p =
€S PESm o, p€ESH

= Z aomz(Pa)p_ 1

0,pESH
= Z (Z aamz(”")) p~!
PESm \CESm
Cu Y €\, m)77! if X is 6-derived
= TEB),
0 otherwise.

Since

> m*Ppe Z(KSn),
PESm
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where Z(KS,,) is the center of KS,,, and Z m*®)p is invertible (see [3, p.

PESm
103]), we get

(1) Z o = { (X pes, M 0) 1Y cp, €A T)T7h i A is é-derived

otherwise.
CESH

A formula for (3 g m*() p)~1 can be derived as in [3] and we now describe it.
Let V be a K-vector space, dimgV = m and let S,, act on the tensor space
V®™ by place permutation, i.e.,

0(1)1 @ QUp) = Ug-1(1) @ =+ ® Vg-1(m)-

Call P the character of the induced S,,-representation. Then if o - m and
Xa is the corresponding irreducible S,,-character, by [5, p. 192] we get that the
multiplicity of x, in P is given by the formula

m-—i+j
(P, Xa) = H (h—a)
ij ij

where (i, j) are the coordinates of the nodes of the diagram of a and A} are the

associated hook numbers. Recall that {P, x,) is also the number of semistandard
tableaux of shape o and content 1,2,...,m. By {3, p. 104] it follows that

-1
z(p) = Xa Xa

Thus recalling that ®(T}) = 5 a, T, from (1) we get that ®*(77) = 0 unless A
is 6-derived and, in this last case,

@)\ _ — 2 z Z G(A T Z Xa Xa(p) p'r‘l

PESH TEB) abm

Hence we can write

PROPOSITION 3: Let A |= n2, h(\) = m. If X is not §-derived, ®*(T1) = 0. If A
is 6-derived then

ONTy) = 2 3 (Z Y Xed o Xel0T) X" e, 7’))

0€S,, \TEB) alm



292 A. GIAMBRUNO AND A. VALENTI Isr. J. Math.

6. The main theorem
We can now prove the main result.
THEOREM 1: Let A, pu = n? h()) = h(u) = m. If either X or p is not é-derived

then FM#(2,y) is a polynomial identity for M, (K). If both X and p are §-derived
then FM#(x,y) is a central polynomial for M, (K) if and only if

3> Xa(1) xa((z';?x;)l"'21)”)6(/\,0)6(#,7) # 0.

c€By alm
TE€B,

Proof: As we pointed out before F*#(z,y) is a central polynomial if and only
if
tr(F*(X1,..., X2, Y1,...,Y2)
is a non-zero invariant.
Write ®#(Th) = > cg. 07155 then, for all p € S, OH(T,) = Yves,, @ lpo

and we compute

Y (s8nm)tr(X1Yeq) -+ Yaqun XaYa(u41) Yoy 4ua)
wES, 2

ttt XmY"(I‘1+"'+#m—1+1) e Y‘n’(nﬂ)
= ®*(T(12.--m)) A(Y)

= > aoTazmo(X1,- .., Xm)A(Y).
TESm

Now make the substitutions
X1 —= X1 Xy X,

Xo = X417 X4,

2
Xm = Xngdoodrmor 1 Xy

and skewsymmetrize with respect to Xi,..., X2. We get

Z (sgn'r) (sgnﬂ')tr(XT(l) o XT()\I)Y”(I) v Y‘rr(u1)XT()\1+1) v

T,mES 2
XT(A1+>\2)YW(#1+1) T Y7r(u1+m) T

Xeuttrmar 1) Xrm?) Yr(ui oo +1) " Ya(n2))

= z as Z (sgn7)T12...myo (X7(1) - Xr(ay)s Xr(aua1)
0€S,  TES 2

.. 'XT()‘1+)\2), ceey XT(A1'+"'+)\m-—1+1) e XT(nz))A(Y)
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Observe that in the last equality the left hand side is equal to tr(F*#(X,Y)) =
tr(FM(XY, ..oy Xz, Y,y -, Yaz).

If i is not é-derived, then by the previous proposition ®#(77) = 0 and by the
above computation also tr(F»*(X,Y)) = 0; hence F»*(z,y) is a polynomial
identity in this case. If A is not é-derived then by Lemma 1

Z (5807)T(12..m)o (Xr(1)  * Xr(an)s - XrOudodAmar 1) " Xr(n2y) = 0
TES 2

and also in this case tr(F*#(X,Y)) = 0 and F»*(z,y) is a polynomial identity
for M,(K).
Suppose then that A and p are both é-derived. Then by Lemma 1 and

Proposition 3 we get
tr(FM*(X,Y))

=Cn Y 66X (12---m)o)A(X)A(Y)
(12---m)o € B,

cz 3 Zxa (1)*xa(o 6(/\,(12...m)g)e(”,7—)A(X)A(Y)

!
(m) (12:--m)e€By atm P Xa
T€B,
and the conclusion of the theorem follows. |

7. Consequences
We now consider a special case of the previous theorem.

COROLLARY 1: Let A |= n? be obtained from & by splitting the k-th part (of
length 2k — 1) into two parts of length, say, 2(k-t) and 2t — 1 respectively. Then
F>(z,y) is a central polynomial provided

Z ch(l) (Xa(a') Xa(m172))

Pox) # 0,

alFn+1
where ¢ = (n + 1)-cycle and wy, 7y are disjoint cycles of length (k — t) and
(n ~ k + t) respectively.

Proof: X is obviously é-derived and By = {(kk+1), (tk)}. Now, (), (kk+1)) =1
and €(}, (tk)) = —1; also (n+1n-- - 321)(kk+1)(tk) can be written as the product
of disjoint cycles of length (k—t) and (n—k+t) and (n+ 1n---321)(tk)(kk+1)
is an (n+1)-cycle. The conclusion now follows from the previous theorem. ]
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To check if

«(1)? o
Z Xa(1) (o) — x (7T17f2))760
(P Xa)
one has to invoke the Murnagham-Nakayama formula ([5, Theorem 2.4.7}) and

the hook formula ([5, Theorem 2.3.21]). It is easy to see that if a - n + 1 and
the Young diagram of o is not included in the shape

atFn+1

(klak2131 2k371k4) = j

then xa(0) = xa(mim2) = 0.
We shall carry out the computation of the sum in the previous corollary in the
special case when either t =k —1 or t =1 and k = n. We have

COROLLARY 2: Suppose that either A = (1,3,5,...,2n—3,2n — 2,1) = n? or
A=(1,3,5,...,2(k=1)~-1,2,2(k - 1) - 1,2(k+ 1) - 1,...,2n~ 1) = n?,

i.e., A is obtained from é by splitting one of its parts into two parts one of length
2. Then F**(x,y) is a central polynomial for M,,(K).

Proof: 1In these cases, recalling that (see {3, p. 105]) if ¢ is a (n + 1)-cycle,

3 Xe Xa(1)’xa(0) _ (cpyrtl

ot (P, Xa) 2n+1

we get that FA*(z,y) is a central polynomial provided

n+1 Xa 1) Xa
-1t — 0
(-1) Mm+1 |—Zn;1 (P, Xa) #

where 7 is an (n ~ 1)-cycle.

Now, Xq(7) can be computed by using [5, 2.4.7] and [5, 2.3.17]: consider a as
a Young diagram on n + 1 boxes; if, by erasing two boxes from the rim of a, the
remaining diagram is not a hook (i.e., of the form (4,n — i+ 1)), then xo(x) = 0.
Also a direct computation shows that for 2 <7 <n -1, x(2,1n-i-1){7) = 0 and
for 2 < i <n, xq1r-i+1y(m) = 0.
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Thus the only S,.1-characters giving a nonzero contribution to the above sum
are those corresponding to the following partitions:

(n+1)

(m,1) n>2
(n—1,2) n>4
(i,3,177¢2 i>3,n>5
(2221“3) i>2,n>5
(22,1773) n>
(2,171 n>2
(1)

We then compute the following tableau:

(1) ™ (P,-)
2n+1)!
X(n+1) 1 1 AT
2n)!
X(n,1) n 1 Zn+7;§!(nn—_1)!
!n+1) n—2) -1 §n+1!!2n-—1)!
X(n-1,2) 2 2(n—1)nl(n—3)1
X ) (n+1)!(i=2) (—1)n—i+l (n+1)(n+2)(i-2)(n+i)!
(i,3,17—i=2) Tn—1)(n—it 1) (n—i—2)10) =D (n—it )i+ D) n—i-2)13!
X ) (n+ 1) (n—i-2) (_1)n—1‘+1 n{n+1){(n—i—2){(n+i)!
(5,22,17=i-3) | DG+ (R-9(i=2)! DA DG+ D n—0)!
n— n 2 n2—
X(22 1n=3) (n+1)2( 2) (~1)n+1 (n+1) 4! 4)
X(2,1m-1) n (-y» n(n +2)
X(1n+1) 1 (-1)™ 1

where as « runs over all the above partitions of n+ 1, the columns of the tableau

represent the values of x4 (1), xo(7) and < P, x, > respectively.

Summing over all partitions of n + 1 we then obtain a nonzero sum for n < 4




296 A. GIAMBRUNO AND A. VALENTI Isr. J. Math.

and, for n > 5, we get

n+1 Xa(l Xa )
(-1" > e

2n+1 abmtl XC!
= (- )n+1 n? +6n 42 i (n+1)In!(2n% - 5n — 4)
(2n+1)(n+2) (2n+1)!
_ (n+1)!2(n—2)!)<

n—5

(-1Y¥(n-j-4) (n-j-3  n(n-j-1)
;,j!(2n~j—3)!(j+3)<j+2 (n+2)(2n—j—2))'

By using Zeilberger’s identity_prover.maple which is an implementation of the
method described in [10], it can be shown that the above function is equal to

(-1)"*13(n+ 1)(n? — 2n +2)
(n+2)2n-3)(2n-1) ’

hence it is nonzero. |
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